"/>

3分pk10-(中国)360百科

Novel mesh helps capture fresh water from power plants

Source: Xinhua    2018-06-10 01:21:52

WASHINGTON, June 9 (Xinhua) -- American engineers have devised a new system that may provide a low-cost source of drinking water for arid city while cut power plant operating costs and revolutionize sea water desalination.

The system can efficiently capture the droplets from both natural fog and plumes of industrial cooling towers, according to a study published on Friday in the journal Science Advances.

About 39 percent of all the fresh water withdrawn from rivers, lakes and reservoirs in the United States is used for the cooling needs of power plants that use fossil fuels or nuclear power and much of that water ends up floating away in clouds of vapor.

The new installation could potentially save a substantial fraction of that lost water and even become a significant source of clean, safe drinking water for coastal cities where seawater is used to cool local power plants.

When the air that is rich in fog is zapped with a beam of electrically charged particles, known as ions, water droplets in it become electrically charged and thus can be drawn toward a mesh of wires, similar to a window screen, placed in their path.

The droplets then collect on that mesh, drain down into a collecting pan, and can be reused in the power plant or sent to a city's water supply system, according to the study.

Initially, Maher Damak, a postdoctoral graduate from Massachusetts Institute of Technology (MIT) used some kind of plastic or metal mesh hung vertically in the path of fogbanks that regularly roll in from the sea, but it could capture only about one to three percent of the water droplets.

As a stream of air passes an obstacle, the airflow naturally deviates around the obstacle, and in this case, water droplets are being swept aside from wires that lie in front of them, according to the researchers.

But then they found that when the incoming fog gets zapped first with an ion beam, not only all of the droplets that are in the path of the wires land on them, even droplets that were aiming for the holes in the mesh get pulled toward the wires. This system can thus capture a much larger fraction of the droplets passing through.

SEA WATER DESALINATION

The team focused on capturing water from the plumes of power plant cooling towers. There, the stream of water vapor is much more concentrated than any naturally occurring fog, and that makes the system even more efficient.

Since capturing evaporated water is in itself a distillation process, the water captured is pure, even if the cooling water is salty or contaminated.

"It's distilled water, which is of higher quality, that's now just wasted," said Kripa Varanasi, associate professor of mechanical engineering at MIT, who co-founded a startup with Damak.

A typical 600-megawatt power plant, according to Varanasi, could capture 150 million gallons of water a year, representing a value of millions of dollars.

This represents about 20 to 30 percent of the water lost from cooling towers. With further refinements, the system may be able to capture even more of the output, Varanasi said.

Additionally, since power plants are already in place along many arid coastlines in the United States and many of them are cooled with seawater, this provides a very simple way to provide water desalination services at a tiny fraction of the cost of building a standalone desalination plant.

They estimated that the installation cost of such a conversion would be about one-third that of building a new desalination plant, and its operating costs would be about 1/50.

The payback time for installing such a system would be about two years and it would have essentially no environmental footprint, adding nothing to that of the original plant, according to Varanasi.

"This can be a great solution to address the global water crisis," Varanasi said. "It could offset the need for about 70 percent of new desalination plant installations in the next decade."

Editor: yan
Related News
Xinhuanet

Novel mesh helps capture fresh water from power plants

Source: Xinhua 2018-06-10 01:21:52

WASHINGTON, June 9 (Xinhua) -- American engineers have devised a new system that may provide a low-cost source of drinking water for arid city while cut power plant operating costs and revolutionize sea water desalination.

The system can efficiently capture the droplets from both natural fog and plumes of industrial cooling towers, according to a study published on Friday in the journal Science Advances.

About 39 percent of all the fresh water withdrawn from rivers, lakes and reservoirs in the United States is used for the cooling needs of power plants that use fossil fuels or nuclear power and much of that water ends up floating away in clouds of vapor.

The new installation could potentially save a substantial fraction of that lost water and even become a significant source of clean, safe drinking water for coastal cities where seawater is used to cool local power plants.

When the air that is rich in fog is zapped with a beam of electrically charged particles, known as ions, water droplets in it become electrically charged and thus can be drawn toward a mesh of wires, similar to a window screen, placed in their path.

The droplets then collect on that mesh, drain down into a collecting pan, and can be reused in the power plant or sent to a city's water supply system, according to the study.

Initially, Maher Damak, a postdoctoral graduate from Massachusetts Institute of Technology (MIT) used some kind of plastic or metal mesh hung vertically in the path of fogbanks that regularly roll in from the sea, but it could capture only about one to three percent of the water droplets.

As a stream of air passes an obstacle, the airflow naturally deviates around the obstacle, and in this case, water droplets are being swept aside from wires that lie in front of them, according to the researchers.

But then they found that when the incoming fog gets zapped first with an ion beam, not only all of the droplets that are in the path of the wires land on them, even droplets that were aiming for the holes in the mesh get pulled toward the wires. This system can thus capture a much larger fraction of the droplets passing through.

SEA WATER DESALINATION

The team focused on capturing water from the plumes of power plant cooling towers. There, the stream of water vapor is much more concentrated than any naturally occurring fog, and that makes the system even more efficient.

Since capturing evaporated water is in itself a distillation process, the water captured is pure, even if the cooling water is salty or contaminated.

"It's distilled water, which is of higher quality, that's now just wasted," said Kripa Varanasi, associate professor of mechanical engineering at MIT, who co-founded a startup with Damak.

A typical 600-megawatt power plant, according to Varanasi, could capture 150 million gallons of water a year, representing a value of millions of dollars.

This represents about 20 to 30 percent of the water lost from cooling towers. With further refinements, the system may be able to capture even more of the output, Varanasi said.

Additionally, since power plants are already in place along many arid coastlines in the United States and many of them are cooled with seawater, this provides a very simple way to provide water desalination services at a tiny fraction of the cost of building a standalone desalination plant.

They estimated that the installation cost of such a conversion would be about one-third that of building a new desalination plant, and its operating costs would be about 1/50.

The payback time for installing such a system would be about two years and it would have essentially no environmental footprint, adding nothing to that of the original plant, according to Varanasi.

"This can be a great solution to address the global water crisis," Varanasi said. "It could offset the need for about 70 percent of new desalination plant installations in the next decade."

[Editor: huaxia]
010020070750000000000000011105521372430121
快3彩票购彩平台 大发彩票welcome 彩神 5分pk10 乐彩彩票 快三网站 大众购彩 一分11选5 极速快3 五分快乐十分 大发购彩中心 乐发lll 大发welcome 大发系列平台 东方彩票 五五世纪平台 凤凰快3 乐发IV彩票购彩中心 彩88 凤凰彩票官方网站 5分pk10 五五世纪 山西快3 55世纪购彩平台 乐发lx Welcome彩神 乐发3彩票APP 购彩中心 55世纪-购彩大厅 大发云app 星辰阁彩票购彩大厅 彩神v 大发彩票购彩平台 5分快3 快三彩票购彩平台 大發3分快3 快3平台 乐彩彩票 大发彩票快乐8 乐发IV welcome手机购彩 大众购彩 天天中平台 快盈IV500 幸运快三 买大小平台赚钱 1分快3 彩神彩票购彩平台 大发pk10 彩信平台 三分11选5 快3购彩中心 乐发ll下载app 彩神Welcome登录入口 乐发 采彡神争霸 快盈iv 神彩v8 55世纪官网 大发彩票www官方 凤凰彩票 10分快三 快三彩票官方网站 五分飞艇 乐发彩票官方网站 乐发Vll 大发快乐8官网 乐发app 大发彩票welcome 幸运5分彩 百姓快3 百度彩票 彩神网 大发彩票 3分快三 快3彩票 一分11选5 极速快3 五分快乐十分 大发购彩中心 乐发lll 大发welcome 大发系列平台 东方彩票 五五世纪平台 凤凰快3 乐发IV彩票购彩中心 彩88 凤凰彩票官方网站 5分pk10 55世纪 重庆快3 55世纪官方网站 乐发VI 彩神 乐发Ⅲ welcome大发彩票 大发购彩大厅welcome 百姓快三 名发app PK彩票 大发彩票购彩平台 5分快3 快三彩票购彩平台 大發3分快3 快3平台 乐彩彩票 大发彩票快乐8 乐发IV welcome手机购彩 五分快三 10元投资彩票赚钱平台 鼎发彩票 彩神iv争霸 网信快3 一分快3 凤凰彩票app下载 3分pk10 乐彩 湖南快3 快3购彩平台 乐发lv 彩神Welcome入口 乐发1 彩神8 百姓彩票welcome 一分三可空降可约app下载 彩神ix 彩票宝 大发彩票app下载 10分快3 快3彩神官方网站 四川快3 乐发彩票购彩平台 乐发彩票ll 大发快乐8官方网站 乐发app下载 welcome凤凰彩票 万乐彩 在线快3 百度彩票 彩神网 大发彩票 3分快三 快3彩票 一分11选5 极速快3 五分快乐十分 大发购彩中心 乐发lll 彩神welcome 乐发网投平台 网信彩票 优彩彩票 彩神8v 网信快三 乐乐彩 凤凰彩票购彩平台 10分pk10 55世纪 重庆快3 55世纪官方网站 乐发VI 彩神 乐发Ⅲ welcome大发彩票 大发购彩大厅welcome 百姓快三 名发app PK彩票 大发彩票购彩平台 5分快3 快三彩票购彩平台 大發3分快3 快3平台 分分快3 大发快乐8 乐发ll welcome购彩中心 五分快三 10元投资彩票赚钱平台 鼎发彩票 彩神iv争霸 网信快3 一分快3 凤凰彩票app下载 3分pk10 乐彩 湖南快3 55世纪购彩平台 乐发lx Welcome彩神 乐发3彩票APP 购彩中心 55世纪-购彩大厅 大发云app 星辰阁彩票购彩大厅 彩神v 大发彩票官方网站 五分快3 快3彩票购彩平台 三分PK10 乐发彩票 乐发国际 大发快乐8购彩平台 乐发III 手机购彩 一分快3平台 彩神v8 快三网站 天天彩票 快三平台 1分快三 彩神彩票官方网站 大发三分快3 极速快三 三分PC蛋蛋 彩神购彩中心 乐发lll下载 彩神welcome 乐发网投平台 网信彩票 优彩彩票 彩神8v 网信快三 乐乐彩 凤凰彩票购彩平台 10分pk10 快三彩票官方网站 五分飞艇 乐发彩票官方网站 乐发Vll 大发快乐8官网 乐发app 大发彩票welcome 幸运5分彩 百姓快3 vip彩票购彩大厅 直播快三 彩神彩票 3分快3 快三彩票 大發5分快3 极速快3购彩平台 分分快3 大发快乐8 乐发ll welcome购彩中心 五分快三 10元投资彩票赚钱平台 鼎发彩票 彩神iv争霸 网信快3 一分快3 凤凰彩票app下载 3分pk10 乐彩 湖南快3 快3购彩平台 乐发lv 彩神Welcome入口 乐发3彩票APP 购彩中心 55世纪-购彩大厅 大发云app 星辰阁彩票购彩大厅 彩神v 大发彩票购彩平台 5分快3 快三彩票购彩平台 大發3分快3 快3平台 乐彩彩票 大发彩票快乐8 乐发IV welcome手机购彩 大众购彩 天天中平台 快盈IV500 幸运快三 买大小平台赚钱 1分快3 彩神彩票购彩平台 大发pk10 彩信平台 三分11选5 快3购彩中心 乐发ll下载app 彩神Welcome登录入口 乐发 采彡神争霸 快盈iv 神彩v8 55世纪官网 大发彩票www官方 凤凰彩票 10分快三 快三彩票官方网站 五分飞艇 乐发彩票官方网站 乐发Vll 大发快乐8官网 乐发app 大发彩票welcome 幸运5分彩 百姓快3 百度彩票 彩神网 大发彩票 3分快三 快3彩票 一分11选5 极速快3 五分快乐十分 大发购彩中心 乐发lll 大发welcome 大发系列平台 东方彩票 五五世纪平台 凤凰快3 乐发IV彩票购彩中心 彩88 凤凰彩票官方网站 5分pk10 五五世纪 山西快3 55世纪购彩平台 乐发lx Welcome彩神 乐发3彩票APP 购彩中心 55世纪-购彩大厅 大发云app 星辰阁彩票购彩大厅 彩神v 大发彩票官方网站 五分快3 快3彩票购彩平台 三分PK10 乐发彩票 乐发国际 大发快乐8购彩平台 乐发III 手机购彩 一分快3平台 10元投资彩票赚钱平台 鼎发彩票 彩神iv争霸 网信快3 一分快3 凤凰彩票app下载 3分pk10 乐彩 湖南快3 快3购彩平台 乐发lv 彩神Welcome入口 乐发1 彩神8 百姓彩票welcome 一分三可空降可约app下载 彩神ix 彩票宝 大发彩票app下载 10分快3 快3彩神官方网站 四川快3 乐发彩票购彩平台 乐发彩票ll 大发快乐8官方网站 乐发app下载 welcome凤凰彩票 万乐彩 在线快3 百度彩票 彩神网 大发彩票 3分快三 快3彩票 一分11选5 极速快3 五分快乐十分 大发购彩中心 乐发lll 彩神welcome 乐发网投平台 网信彩票 优彩彩票 彩神8v 网信快三 乐乐彩 凤凰彩票购彩平台 10分pk10 55世纪 重庆快3 55世纪官方网站 乐发VI 彩神 乐发Ⅲ welcome大发彩票 大发购彩大厅welcome 百姓快三 名发app PK彩票 大发彩票购彩平台 5分快3 快三彩票购彩平台 大發3分快3 快3平台 乐彩彩票 大发彩票快乐8 乐发IV welcome手机购彩 大众购彩 天天中平台 快盈IV500 幸运快三 买大小平台赚钱 1分快3 彩神彩票购彩平台 大发pk10 彩信平台 三分11选5 快3购彩平台 乐发lv 彩神Welcome入口 乐发1 彩神8 百姓彩票welcome 一分三可空降可约app下载 星辰阁彩票购彩大厅 彩神v 大发彩票官方网站 五分快3 快3彩票购彩平台 三分PK10 乐发彩票 乐发国际 大发快乐8购彩平台 乐发III 手机购彩 一分快3平台 彩神v8 快三网站 天天彩票 快三平台 1分快三 彩神彩票官方网站 大发三分快3 极速快三 三分PC蛋蛋 彩神购彩中心 乐发lll下载 彩神welcome 乐发网投平台 网信彩票